If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2/2=16
We move all terms to the left:
y^2/2-(16)=0
We multiply all the terms by the denominator
y^2-16*2=0
We add all the numbers together, and all the variables
y^2-32=0
a = 1; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·1·(-32)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*1}=\frac{0-8\sqrt{2}}{2} =-\frac{8\sqrt{2}}{2} =-4\sqrt{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*1}=\frac{0+8\sqrt{2}}{2} =\frac{8\sqrt{2}}{2} =4\sqrt{2} $
| 9v+14=5(v-2) | | 90*x=7.1 | | 5f+17=9f+1 | | 3+16=-9+k | | (t-25)(t+2)=0 | | 13v=64 | | 2+8+x=50 | | 4w+9=5w+4 | | 9.9/x=0.1 | | 7^x-5=7^x+2 | | 4u+40=12u | | x+(x*x)/2=10 | | 2|3x+4|-10=12 | | 3/x+16=4/48 | | 8g(4)=g+9 | | 36/d=2/3 | | -6+u=23 | | 8=14+6x | | 21x+40=18x+10 | | p-3/4=6 | | 2n-5+×5n-5=5 | | 4/5x+6/7=44/35 | | -4,900÷70=a | | -3x-6=-42/5 | | 8x8=12 | | x^2-4x-450=0 | | 4x(2x-6)=24 | | 3/x-4=5/2x-7 | | 2x+(x-17.85)=71.7 | | x+36=39 | | h/5+3=7 | | 95+60+2x+x=360 |